600 Series # **Hy-Check Valve** - · Built-in Automatic Check Valve - Improved Flow Characteristics - · Drip Tight, Positive Seating - · Globe or Angle Pattern - · Packless Construction The Cla-Val Model 100-23 Hy-Check Valve is a hydraulically operated diaphragm valve with a built-in check feature to prevent return flow. Available in a globe or angle pattern, it consists of three parts: body, cover and diaphragm assembly. The only moving part is the diaphragm assembly which is guided top and bottom by a precision machined stem. When operating pressure is applied above the non-wicking diaphragm, a synthetic rubber disc retained on three and one-half sides forms a drip-tight seal with the renewable seat. When pressure above the diaphragm is relieved the valve opens wide. The rate of closing or opening can be controlled by modulating the flow into or out of the diaphragm chamber. When a pressure reversal occurs the split valve stem will allow the disc retainer assembly to check closed regardless of the position of the diaphragm. The Model 100-23 is used on system applications requiring remote control, pressure regulation, solenoid control, rate of flow control, liquid level control, or wherever a positive check feature is necessary to prevent reverse flow. ## **Principle of Operation** ### **Full Open Operation** When pressure in the cover chamber is relieved to a zone of lower pressure, the line pressure at the valve inlet opens the valve, allowing full flow. #### Tight Closing Operation When pressure from the valve inlet is applied to the cover chamber, the valve closes drip-tight. #### **Check Action** When a static condition or pressure reversal occurs, the split stem design allows the valve to instantly check closed. Return flow is prevented regardless of the diaphragm's position. Note: For optimum operation of built-in check feature, installation with stem vertically up is recommended. # Cla-Val 100-23 Hy-Check Main Valve Specifications ## **Available Sizes** | Pattern | Flanged | | | | | | |----------------|----------------|--|--|--|--|--| | Globe (inches) | 3" - 24" | | | | | | | Globe (mm) | 80 - 600 mm | | | | | | | Angle (inches) | 6", 8" | | | | | | | Angle (mm) | 150 and 200 mm | | | | | | # **Operating Temp. Range** | Fluids | |---------------------------------| | -40° to 180° F
-40° to 82° C | 6" Globe, Flanged 6" Angle, Flanged 12" Globe, Flanged ## Pressure Ratings (Recommended Maximum Pressure - psi) | Valve Body 8 | Cover | Pressure Class | | | | | | | |---------------|--------------|--------------------|--------------|--------------|--|--|--|--| | valve body o | Cover | Flanged | | | | | | | | Grade | Material | ANSI
Standards* | 150
Class | 300
Class | | | | | | ASTM A536 | Ductile Iron | B16.42 | 250 | 400 | | | | | | ASTM A216-WCB | Cast Steel | B16.5 | 285 | 400 | | | | | | UNS 87850 | Bronze | B16.24 | 225 | 400 | | | | | * ANSI standards are for flange dimensions only. Flanged valves are available faced but not drilled. Valves for higher pressure are available; consult factory for details #### **Materials** | Component | Standa | Standard Material Combinations | | | | | | | |---|---|--------------------------------|-------------|--|--|--|--|--| | Body & Cover | Ductile Iron | Cast Steel | Bronze | | | | | | | Available Sizes (inches) | 3" - 24" | 3" - 16" | 3" - 16" | | | | | | | Available Sizes (mm) | 80 - 600 mm | 80 - 400 mm | 80 - 400 mm | | | | | | | Disc Retainer &
Diaphragm Washer | Cast Iron | Cast Steel | Bronze | | | | | | | Trim: Disc Guide,
Seat & Cover Bearing | Bronze is Standard
Stainless Steel is optional | | | | | | | | | Disc | Buna-N® Rubber | | | | | | | | | Diaphragm | Nylon Reinforced Buna-N® Rubber | | | | | | | | | Stem, Nut & Spring | Stem, Nut & Spring Stainless Steel | | | | | | | | | For material options not listed, consult factory. | | | | | | | | | Cla-Val manufactures valves in more than 50 different alloys. # **Options** ## **NSF/ANSI 61 Fusion Bonded Epoxy** Coating - suffix KC The fusion bonded epoxy coating option is for use with cast iron, ductile iron or steel valves. This coating is resistant to various water conditions, certain acids, chemicals, solvents and alkalies. epoxy coatings are applied in accordance with AWWA coating specifications C116-03. Do not use with temperatures above 175° F. Optional diaphragm, disc and o-ring fabricated with Viton® synthetic rubber. Viton® is well suited for use with mineral acids, salt solutions, chlorinated hydrocarbons, and petroleum oils; and is primarily used in high temperature applications up to 250° F. Do not use with epoxy coating above 175°F. For assistance in selecting appropriate valve options or valves manufactured with special design requirements, please contact our Regional Sales Office or Factory. 20" Globe, Flanged # Cla-Val 100-23 Hy-Check Main Valve Functional Data | Valve Size | | Inches | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | |---|-------------|--------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | | mm. | 80 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 460 | 500 | 600 | | | Globe | Gal./Min. (gpm.) | 62 | 136 | 229 | 480 | 930 | 1458 | 1725 | 2110 | 3250* | 3400* | 4020 | | C _V | Pattern | Litres/Sec. (I/s.) | 15 | 32.5 | 55 | 115 | 223 | 350 | 414 | 506 | 705 | 816 | 965 | | Factor | Angle | Gal./Min. (gpm.) | _ | 135 | 233 | 545 | _ | _ | _ | _ | _ | _ | _ | | | Pattern | Litres/Sec. (I/s.) | _ | 32 | 56 | 132 | | _ | | | _ | | | | Equivalent | Globe | Feet (ft.) | 293 | 251 | 777 | 748 | 621 | 654 | 750 | 977 | 983 | 1125 | 3005 | | Length | Pattern | Meters (m.) | 89.3 | 76.4 | 237.1 | 228.1 | 189.5 | 199.4 | 228.7 | 298.1 | 299.9 | 343.2 | 916.6 | | of | Angle | Feet (ft.) | _ | 254 | 751 | 580 | | _ | | | _ | | | | Pipe | Pattern | Meters (m.) | _ | 77.6 | 229 | 176.9 | _ | _ | | _ | _ | | _ | | K | | Globe Pattern | 20.6 | 12.7 | 23.1 | 15.7 | 10.4 | 8.5 | 8.9 | 10.2 | 6.9 | 9.7 | 14.5 | | Factor | | Angle Pattern | _ | 12.9 | 22.3 | 12.2 | _ | _ | _ | _ | _ | _ | _ | | | | Fl. Oz | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Liquid Displaced from
Cover Chamber When | U.S. Gal. | 0.32 | .08 | .17 | .53 | 1.26 | 2.51 | 4.0 | 4.0 | 9.6 | 9.6 | 9.6 | | | | Valve Opens | ml | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | Litres | .12 | .30 | .64 | 2.0 | 4.8 | 9.5 | 15.1 | 15.1 | 36.2 | 36.2 | 36.2 | ^{*}Estimated #### C_V Factor Formulas for computing C_V Factor, Flow (Q) and Pressure Drop (\blacktriangle P): $$C_{V} = \frac{Q}{\sqrt{\triangle P}} \qquad Q = C_{V} \sqrt{\triangle P} \qquad \triangle P = \left(\frac{Q}{C_{V}}\right)^{2}$$ K Factor (Resistance Coefficient) The Value of K is calculated from the formula: $K = \frac{894d^4}{2}$ (U.S. system units) **Equivalent Length of Pipe** Equivalent length of pipe (L) are determined from the formula: L = Kd (LLS system units) (U.S. system units) Fluid Velocity Fluid velocity can be calculated from the following formula: $V = \frac{.4085 \text{ Q}}{d^2}$ (U.S. system units) #### Where: C_V = U.S. (gpm) @ 1 psi differential at 60° F water = (I/s) @ 1 bar (14.5 PSIG) differential **d** = inside pipe diameter of Schedule 40 Steel Pipe (inches) f = friction factor for clean, new Schedule 40 pipe (dimensionless) (from Cameron Hydraulic Data, 18th Edition, P 3-119) K = Resistance Coefficient (calculated) L = Equivalent Length of Pipe (feet) Q = Flow Rate in U.S. (gpm) or (l/s) **V** = Fluid Velocity (feet per second) or (meters per second) △ P = Pressure Drop in (psi) or (bar) # Model 100-23 Flow Chart (Based on normal flow through a wide open valve) # Cla-Val 100-23 Hy-Check Main Valve Dimensions | Valve Size (Inches) | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 | |-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | A 150 ANSI | 10.25 | 13.88 | 17.75 | 21.38 | 26.00 | 30.00 | 34.25 | 35.00 | 42.12 | 48.00 | 48.00 | | AA 300 ANSI | 11.00 | 14.50 | 18.62 | 22.38 | 27.38 | 31.50 | 35.75 | 36.62 | 43.63 | 49.62 | 49.75 | | B Diameter | 6.62 | 9.12 | 11.50 | 15.75 | 20.00 | 23.62 | 27.47 | 28.00 | 35.44 | 35.44 | 35.44 | | C Maximum | 7.00 | 8.62 | 11.62 | 15.00 | 17.88 | 21.00 | 20.88 | 25.75 | 25.00 | 31.50 | 31.50 | | D 150 ANSI | _ | 6.94 | 8.88 | 10.69 | _ | _ | _ | _ | _ | _ | _ | | DD 300 ANSI | _ | 7.25 | 9.38 | 11.19 | _ | _ | _ | _ | _ | _ | _ | | E 150 ANSI | _ | 5.50 | 6.75 | 7.25 | _ | _ | _ | _ | _ | _ | _ | | EE 300 ANSI | _ | 5.81 | 7.25 | 7.75 | _ | _ | _ | _ | _ | _ | _ | | F 150 ANSI | 3.75 | 4.50 | 5.50 | 6.75 | 8.00 | 9.50 | 11.00 | 11.75 | 15.88 | 14.56 | 17.00 | | FF 300 ANSI | 4.12 | 5.00 | 6.25 | 7.50 | 8.75 | 10.25 | _ | 12.75 | 15.88 | 16.06 | 19.00 | | H NPT Body Tapping | .375 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | J NPT Cover Center Plug | 0.50 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.25 | 1.25 | 2.00 | 2.00 | 2.00 | | K NPT Cover Tapping | .375 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Stem Travel | 0.60 | 0.80 | 1.10 | 1.70 | 2.30 | 2.80 | 3.40 | 3.40 | 4.50 | 4.50 | 4.50 | | Approx. Ship Weight (lbs) | 45 | 85 | 195 | 330 | 625 | 900 | 1250 | 1380 | 2365 | 2551 | 2733 | | Approx. X Pilot System | 13.00 | 15.00 | 27.00 | 30.00 | 33.00 | 36.00 | 36.00 | 41.00 | 40.00 | 46.00 | 55.00 | | Approx. Y Pilot System | 10.00 | 11.00 | 18.00 | 20.00 | 22.00 | 24.00 | 26.00 | 26.00 | 30.00 | 30.00 | 30.00 | | Approx. Z Pilot System | 10.00 | 11.00 | 18.00 | 20.00 | 22.00 | 24.00 | 26.00 | 26.00 | 30.00 | 30.00 | 30.00 | | Valve Size (mm) | 80 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | |---------------------------|------|------|------|------|------|------|------|------|------|------|------| | A 150 ANSI | 260 | 353 | 451 | 543 | 660 | 762 | 870 | 889 | 1070 | 1219 | 1219 | | AA 300 ANSI | 279 | 368 | 473 | 568 | 695 | 800 | 908 | 930 | 1108 | 1260 | 1263 | | B Diameter | 168 | 232 | 292 | 400 | 508 | 600 | 698 | 711 | 900 | 900 | 900 | | C Maximum | 178 | 219 | 295 | 381 | 454 | 533 | 530 | 654 | 635 | 800 | 800 | | D 150 ANSI | _ | 176 | 226 | 272 | CF* | DD 300 ANSI | _ | 184 | 238 | 284 | CF* | E 150 ANSI | _ | 140 | 171 | 184 | CF* | EE 300 ANSI | _ | 148 | 184 | 197 | CF* | F 150 ANSI | 95 | 114 | 140 | 171 | 203 | 241 | 279 | 298 | 403 | 370 | 432 | | FF 300 ANSI | 105 | 127 | 159 | 191 | 222 | 260 | _ | 324 | 403 | 408 | 483 | | H NPT Body Tapping | 0.38 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | J NPT Cover Center Plug | 0.50 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.25 | 1.25 | 2.00 | 2.00 | 2.00 | | K NPT Cover Tapping | 0.38 | 0.50 | 0.75 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Stem Travel | 15 | 20 | 28 | 43 | 58 | 71 | 86 | 86 | 86 | 114 | 114 | | Approx. Ship Weight (kgs) | 20 | 39 | 89 | 150 | 284 | 409 | 568 | 627 | 681 | 1157 | 1249 | | Approx. X Pilot System | 330 | 381 | 686 | 762 | 838 | 914 | 914 | 1041 | 1016 | 1168 | 1397 | | Approx. Y Pilot System | 254 | 279 | 457 | 508 | 559 | 610 | 660 | 660 | 762 | 762 | 762 | | Approx. Z Pilot System | 254 | 279 | 457 | 508 | 559 | 610 | 660 | 660 | 762 | 762 | 762 | For assistance in selecting appropriate valve options or valves manufactured with special design requirements, please contact our Regional Sales Office or Factory. ## **Service and Installation** Cla-Val Control Valves operate with maximum efficiency when mounted in horizontal piping with the main valve cover UP, however, other positions are acceptable. Due to component size and weight of 10 inch and larger valves, installation with cover UP is advisable. We recommend isolation valves be installed on inlet and outlet for maintenance. Adequate space above and around the valve for service personnel should be considered essential. A regular maintenance program should be established based on the specific application data. However, we recommend a thorough inspection be done at least once a year. Consult factory for specific recommendations.